级数列表

级数列表

低次数多重对数函数

编辑

有限项求和︰

k

=

0

n

z

k

=

1

z

n

+

1

1

z

{\displaystyle \sum _{k=0}^{n}z^{k}={\frac {1-z^{n+1}}{1-z}}}

, (等比数列)

k

=

1

n

k

z

k

=

z

1

(

n

+

1

)

z

n

+

n

z

n

+

1

(

1

z

)

2

{\displaystyle \sum _{k=1}^{n}kz^{k}=z{\frac {1-(n+1)z^{n}+nz^{n+1}}{(1-z)^{2}}}}

k

=

1

n

k

2

z

k

=

z

1

+

z

(

n

+

1

)

2

z

n

+

(

2

n

2

+

2

n

1

)

z

n

+

1

n

2

z

n

+

2

(

1

z

)

3

{\displaystyle \sum _{k=1}^{n}k^{2}z^{k}=z{\frac {1+z-(n+1)^{2}z^{n}+(2n^{2}+2n-1)z^{n+1}-n^{2}z^{n+2}}{(1-z)^{3}}}}

k

=

1

n

k

m

z

k

=

(

z

d

d

z

)

m

1

z

n

+

1

1

z

{\displaystyle \sum _{k=1}^{n}k^{m}z^{k}=\left(z{\frac {d}{dz}}\right)^{m}{\frac {1-z^{n+1}}{1-z}}}

无限项求和,其中

|

z

|

<

1

{\displaystyle |z|<1}

(参见多重对数函数)︰

Li

n

(

z

)

=

k

=

1

z

k

k

n

{\displaystyle \operatorname {Li} _{n}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{n}}}}

以下是递归计算低整数次幂的多重对数函数以得出解析解时所用到的一个性质︰

d

d

z

Li

n

(

z

)

=

Li

n

1

(

z

)

z

{\displaystyle {\frac {d}{dz}}\operatorname {Li} _{n}(z)={\frac {\operatorname {Li} _{n-1}(z)}{z}}}

前几项分别为︰

Li

1

(

z

)

=

k

=

1

z

k

k

=

ln

(

1

z

)

{\displaystyle \operatorname {Li} _{1}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k}}=-\ln(1-z)}

Li

0

(

z

)

=

k

=

1

z

k

=

z

1

z

{\displaystyle \operatorname {Li} _{0}(z)=\sum _{k=1}^{\infty }z^{k}={\frac {z}{1-z}}}

Li

1

(

z

)

=

k

=

1

k

z

k

=

z

(

1

z

)

2

{\displaystyle \operatorname {Li} _{-1}(z)=\sum _{k=1}^{\infty }kz^{k}={\frac {z}{(1-z)^{2}}}}

Li

2

(

z

)

=

k

=

1

k

2

z

k

=

z

(

1

+

z

)

(

1

z

)

3

{\displaystyle \operatorname {Li} _{-2}(z)=\sum _{k=1}^{\infty }k^{2}z^{k}={\frac {z(1+z)}{(1-z)^{3}}}}

Li

3

(

z

)

=

k

=

1

k

3

z

k

=

z

(

1

+

4

z

+

z

2

)

(

1

z

)

4

{\displaystyle \operatorname {Li} _{-3}(z)=\sum _{k=1}^{\infty }k^{3}z^{k}={\frac {z(1+4z+z^{2})}{(1-z)^{4}}}}

Li

4

(

z

)

=

k

=

1

k

4

z

k

=

z

(

1

+

z

)

(

1

+

10

z

+

z

2

)

(

1

z

)

5

{\displaystyle \operatorname {Li} _{-4}(z)=\sum _{k=1}^{\infty }k^{4}z^{k}={\frac {z(1+z)(1+10z+z^{2})}{(1-z)^{5}}}}

指数函数

编辑

k

=

0

z

k

k

!

=

e

z

{\displaystyle \sum _{k=0}^{\infty }{\frac {z^{k}}{k!}}=e^{z}}

k

=

0

k

z

k

k

!

=

z

e

z

{\displaystyle \sum _{k=0}^{\infty }k{\frac {z^{k}}{k!}}=ze^{z}}

(参见Poisson分布的数学期望)

k

=

0

k

2

z

k

k

!

=

(

z

+

z

2

)

e

z

{\displaystyle \sum _{k=0}^{\infty }k^{2}{\frac {z^{k}}{k!}}=(z+z^{2})e^{z}}

(参见Poisson分布的二阶矩)

k

=

0

k

3

z

k

k

!

=

(

z

+

3

z

2

+

z

3

)

e

z

{\displaystyle \sum _{k=0}^{\infty }k^{3}{\frac {z^{k}}{k!}}=(z+3z^{2}+z^{3})e^{z}}

k

=

0

k

4

z

k

k

!

=

(

z

+

7

z

2

+

6

z

3

+

z

4

)

e

z

{\displaystyle \sum _{k=0}^{\infty }k^{4}{\frac {z^{k}}{k!}}=(z+7z^{2}+6z^{3}+z^{4})e^{z}}

k

=

0

k

n

z

k

k

!

=

z

d

d

z

k

=

0

k

n

1

z

k

k

!

=

e

z

T

n

(

z

)

{\displaystyle \sum _{k=0}^{\infty }k^{n}{\frac {z^{k}}{k!}}=z{\frac {d}{dz}}\sum _{k=0}^{\infty }k^{n-1}{\frac {z^{k}}{k!}}\,\!=e^{z}T_{n}(z)}

其中,

T

n

(

z

)

{\displaystyle T_{n}(z)}

表示图沙德多项式。

三角函数、反三角函数、双曲函数及反双曲函数

编辑

k

=

0

(

1

)

k

z

2

k

+

1

(

2

k

+

1

)

!

=

sin

z

{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}=\sin z}

k

=

0

z

2

k

+

1

(

2

k

+

1

)

!

=

sinh

z

{\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)!}}=\sinh z}

k

=

0

(

1

)

k

z

2

k

(

2

k

)

!

=

cos

z

{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{(2k)!}}=\cos z}

k

=

0

z

2

k

(

2

k

)

!

=

cosh

z

{\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k}}{(2k)!}}=\cosh z}

k

=

1

(

1

)

k

1

(

2

2

k

1

)

2

2

k

B

2

k

z

2

k

1

(

2

k

)

!

=

tan

z

,

|

z

|

<

π

2

{\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tan z,|z|<{\frac {\pi }{2}}}

k

=

1

(

2

2

k

1

)

2

2

k

B

2

k

z

2

k

1

(

2

k

)

!

=

tanh

z

,

|

z

|

<

π

2

{\displaystyle \sum _{k=1}^{\infty }{\frac {(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tanh z,|z|<{\frac {\pi }{2}}}

k

=

0

(

1

)

k

2

2

k

B

2

k

z

2

k

1

(

2

k

)

!

=

cot

z

,

|

z

|

<

π

{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\cot z,|z|<\pi }

k

=

0

2

2

k

B

2

k

z

2

k

1

(

2

k

)

!

=

coth

z

,

|

z

|

<

π

{\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\coth z,|z|<\pi }

k

=

0

(

1

)

k

1

(

2

2

k

2

)

B

2

k

z

2

k

1

(

2

k

)

!

=

csc

z

,

|

z

|

<

π

{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\csc z,|z|<\pi }

k

=

0

(

2

2

k

2

)

B

2

k

z

2

k

1

(

2

k

)

!

=

csch

z

,

|

z

|

<

π

{\displaystyle \sum _{k=0}^{\infty }{\frac {-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\operatorname {csch} z,|z|<\pi }

k

=

0

(

1

)

k

E

2

k

z

2

k

(

2

k

)

!

=

sec

z

,

|

z

|

<

π

2

{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}E_{2k}z^{2k}}{(2k)!}}=\sec z,|z|<{\frac {\pi }{2}}}

k

=

0

E

2

k

z

2

k

(

2

k

)

!

=

sech

z

,

|

z

|

<

π

2

{\displaystyle \sum _{k=0}^{\infty }{\frac {E_{2k}z^{2k}}{(2k)!}}=\operatorname {sech} z,|z|<{\frac {\pi }{2}}}

k

=

1

(

1

)

k

1

z

2

k

(

2

k

)

!

=

ver

z

{\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{(2k)!}}=\operatorname {ver} z}

(正矢)

k

=

1

(

1

)

k

1

z

2

k

2

(

2

k

)

!

=

hav

z

{\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{2(2k)!}}=\operatorname {hav} z}

[1](半正矢)

k

=

0

(

2

k

)

!

z

2

k

+

1

2

2

k

(

k

!

)

2

(

2

k

+

1

)

=

arcsin

z

,

|

z

|

1

{\displaystyle \sum _{k=0}^{\infty }{\frac {(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\arcsin z,|z|\leq 1}

k

=

0

(

1

)

k

(

2

k

)

!

z

2

k

+

1

2

2

k

(

k

!

)

2

(

2

k

+

1

)

=

arcsinh

z

,

|

z

|

1

{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\operatorname {arcsinh} {z},|z|\leq 1}

k

=

0

(

1

)

k

z

2

k

+

1

2

k

+

1

=

arctan

z

,

|

z

|

<

1

{\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2k+1}}=\arctan z,|z|<1}

k

=

0

z

2

k

+

1

2

k

+

1

=

arctanh

z

,

|

z

|

<

1

{\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{2k+1}}=\operatorname {arctanh} z,|z|<1}

ln

2

+

k

=

1

(

1

)

k

1

(

2

k

)

!

z

2

k

2

2

k

+

1

k

(

k

!

)

2

=

ln

(

1

+

1

+

z

2

)

,

|

z

|

1

{\displaystyle \ln 2+\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^{2}}}=\ln \left(1+{\sqrt {1+z^{2}}}\right),|z|\leq 1}

修正的分母阶乘

编辑

k

=

0

(

4

k

)

!

2

4

k

2

(

2

k

)

!

(

2

k

+

1

)

!

z

k

=

1

1

z

z

,

|

z

|

<

1

{\displaystyle \sum _{k=0}^{\infty }{\frac {(4k)!}{2^{4k}{\sqrt {2}}(2k)!(2k+1)!}}z^{k}={\sqrt {\frac {1-{\sqrt {1-z}}}{z}}},|z|<1}

[2]

k

=

0

2

2

k

(

k

!

)

2

(

k

+

1

)

(

2

k

+

1

)

!

z

2

k

+

2

=

(

arcsin

z

)

2

,

|

z

|

1

{\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}(k!)^{2}}{(k+1)(2k+1)!}}z^{2k+2}=\left(\arcsin {z}\right)^{2},|z|\leq 1}

[2]

n

=

0

k

=

0

n

1

(

4

k

2

+

α

2

)

(

2

n

)

!

z

2

n

+

n

=

0

α

k

=

0

n

1

[

(

2

k

+

1

)

2

+

α

2

]

(

2

n

+

1

)

!

z

2

n

+

1

=

e

α

arcsin

z

,

|

z

|

1

{\displaystyle \sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(4k^{2}+\alpha ^{2})}{(2n)!}}z^{2n}+\sum _{n=0}^{\infty }{\frac {\alpha \prod _{k=0}^{n-1}[(2k+1)^{2}+\alpha ^{2}]}{(2n+1)!}}z^{2n+1}=e^{\alpha \arcsin {z}},|z|\leq 1}

二项式系数

编辑

(

1

+

z

)

α

=

k

=

0

(

α

k

)

z

k

,

|

z

|

<

1

{\displaystyle (1+z)^{\alpha }=\sum _{k=0}^{\infty }{\alpha \choose k}z^{k},|z|<1}

(参见二项式定理)

[3]

k

=

0

(

α

+

k

1

k

)

z

k

=

1

(

1

z

)

α

,

|

z

|

<

1

{\displaystyle \sum _{k=0}^{\infty }{{\alpha +k-1} \choose k}z^{k}={\frac {1}{(1-z)^{\alpha }}},|z|<1}

[3]

k

=

0

1

k

+

1

(

2

k

k

)

z

k

=

1

1

4

z

2

z

,

|

z

|

1

4

{\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k+1}}{2k \choose k}z^{k}={\frac {1-{\sqrt {1-4z}}}{2z}},|z|\leq {\frac {1}{4}}}

(卡塔兰数的母函数)

[3]

k

=

0

(

2

k

k

)

z

k

=

1

1

4

z

,

|

z

|

<

1

4

{\displaystyle \sum _{k=0}^{\infty }{2k \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}},|z|<{\frac {1}{4}}}

(中心二项式系数的母函数)

[3]

k

=

0

(

2

k

+

α

k

)

z

k

=

1

1

4

z

(

1

1

4

z

2

z

)

α

,

|

z

|

<

1

4

{\displaystyle \sum _{k=0}^{\infty }{2k+\alpha \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}}\left({\frac {1-{\sqrt {1-4z}}}{2z}}\right)^{\alpha },|z|<{\frac {1}{4}}}

调和数

编辑

k

=

1

H

k

z

k

=

ln

(

1

z

)

1

z

,

|

z

|

<

1

{\displaystyle \sum _{k=1}^{\infty }H_{k}z^{k}={\frac {-\ln(1-z)}{1-z}},|z|<1}

k

=

1

H

k

k

+

1

z

k

+

1

=

1

2

[

ln

(

1

z

)

]

2

,

|

z

|

<

1

{\displaystyle \sum _{k=1}^{\infty }{\frac {H_{k}}{k+1}}z^{k+1}={\frac {1}{2}}\left[\ln(1-z)\right]^{2},\qquad |z|<1}

k

=

1

(

1

)

k

1

H

2

k

2

k

+

1

z

2

k

+

1

=

1

2

arctan

z

log

(

1

+

z

2

)

,

|

z

|

<

1

{\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}H_{2k}}{2k+1}}z^{2k+1}={\frac {1}{2}}\arctan {z}\log {(1+z^{2})},\qquad |z|<1}

[2]

n

=

0

k

=

0

2

n

(

1

)

k

2

k

+

1

z

4

n

+

2

4

n

+

2

=

1

4

arctan

z

log

1

+

z

1

z

,

|

z

|

<

1

{\displaystyle \sum _{n=0}^{\infty }\sum _{k=0}^{2n}{\frac {(-1)^{k}}{2k+1}}{\frac {z^{4n+2}}{4n+2}}={\frac {1}{4}}\arctan {z}\log {\frac {1+z}{1-z}},\qquad |z|<1}

[2]

相关文章

华为手机管家杀毒有用吗
office365打不开doc文件

华为手机管家杀毒有用吗

📅 07-15 👁️ 1373